Fields of definition of building blocks with quaternionic multiplication

نویسنده

  • Xavier Guitart
چکیده

This paper investigates the fields of definition up to isogeny of the abelian varieties called building blocks. In [5] and [3] a characterization of the fields of definition of these varieties together with their endomorphisms is given in terms of a Galois cohomology class canonically attached to them. However, when the building blocks have quaternionic multiplication, then the field of definition of the varieties can be strictly smaller than the field of definition of their endomorphisms. What we do is to give a characterization of the field of definition of the varieties in this case (also in terms of their associated Galois cohomology class), by translating the problem into the language of group extensions with non-abelian kernel. We also make the computations that are needed in order to calculate in practice these fields from our characterization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fields of definition of building blocks

We investigate the fields of definition up to isogeny of the abelian varieties known as building blocks. These varieties are defined as the Q-varieties admitting real or quaternionic multiplications of the maximal possible degree allowed by their dimensions (cf. Pyle (2004)). The Shimura-Taniyama conjecture predicts that every such variety is isogenous to a non-CM simple factor of a modular Jac...

متن کامل

On Abelian Surfaces with Potential Quaternionic Multiplication

An abelian surface A over a field K has potential quaternionic multiplication if the ring End K̄ (A) of geometric endomorphisms of A is an order in an indefinite rational division quaternion algebra. In this brief note, we study the possible structures of the ring of endomorphisms of these surfaces and we provide explicit examples of Jacobians of curves of genus two which show that our result is...

متن کامل

The field of moduli of quaternionic multiplication on abelian varieties

We consider principally polarized abelian varieties with quaternionic multiplication over number fields and we study the field of moduli of their endomorphisms in relation to the set of rational points on suitable Shimura varieties. Published in Intern. J. Math. M. Sc. 52 (2004), 2795-2808.

متن کامل

The Arithmetic of Qm-abelian Surfaces through Their Galois Representations

This note provides an insight to the diophantine properties of abelian surfaces with quaternionic multiplication over number fields. We study the fields of definition of the endomorphisms on these abelian varieties and the images of the Galois representations on their Tate modules. We illustrate our results with an explicit example. 1. Abelian surfaces with quaternionic multiplication Fix Q an ...

متن کامل

Sparse Approximations for Quaternionic Signals

In this paper, we introduce a new processing procedure for quaternionic signals through consideration of the well-known orthogonal matching pursuit (OMP), which provides sparse approximation. Due to quaternions noncommutativity, two quaternionic extensions are presented: the right-multiplication quaternionic OMP, that can be used to process right-multiplication linear combinations of quaternion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009